
Lab	6	—	TypeScript,	HTML,	and	Representation	in
Computing

In	this	lab	we’ll	use	web	technologies	to	critically	examine	representation	in	K-12	CS	education	in
California.

Pre-reading

Computing	is	considered	a	“21st-century	literacy”,	with	many	arguing	compellingly	that	all	students
should	learn	some	computing,	whether	or	not	they	intend	to	pursue	computing	as	a	career.	While	progress
has	been	made	toward	making	this	vision	a	reality,	much	yet	remains	to	be	done.	In	California,	only	5%

of	high-school	students	take	CS	courses.1	When	one	looks	at	individual	demographics,	the	situation	is
even	more	dire	for	slices	of	society.	Specifically,	Hispanic/Latino	students	and	Black	students	still	take	CS
courses	at	lower	rates	than	White	or	Asian	students,	and	girls	still	take	CS	courses	at	lower	rates	than
boys.	Crucially,	this	is	not	due	to	a	lack	of	interest	in	studying	computing.

Please	read	the	paper	Diversity	Barriers	in	K-12	Computer	Science	Education:	Structural	and	Social.
The	paper	explores	various	reasons	behind	these	disparities	through	large-scale	survey	data	collection	(not
limited	to	just	California).

As	you	work	through	the	lab,	answer	the	Reflection	questions	at	the	end	of	Parts	1,	2,	and	3,	drawing	on
what	you	have	read	in	the	paper.

Objectives

To	use	TypeScript	to	embed	Vega-lite	figures	into	HTML	pages.
To	transform	an	existing	dataset	to	prepare	it	for	use	in	Vega-lite	visualizations.
To	use	TypeScript	features	like	variables,	collections,	conditions,	loops,	functions,	and	problem-
solving	patterns	like	map,	reduce,	filter,	and	sort	to	perform	the	above	transformations.
To	critically	examine	representation	in	K-12	CS	education	in	the	state	of	California.
To	identify	and	answer	original	questions	regarding	representation	in	K-12	CS	education	in
California.

BPC	learning	objectives

To	reflect	on	the	which	community	groups	might	be	served	by	this	type	of	computational
artifact/program	and	which	groups	were	left	out	of	the	development	process
To	reflect	on	the	ways	that	computing	can	offer	opportunities	for	achieving	communal	goals	(and	be
able	to	define	the	ways	computing	can	be	used	to	reach	these	goals)

Introduction

In	this	lab,	we’ll	put	together	everything	we’ve	learned	so	far.	That	is,	we’ll	use	the	following	pieces:

HTML	(and	some	CSS)

https://dl.acm.org/doi/abs/10.1145/3017680.3017734

TypeScript
Vega-lite

Over	the	past	7	weeks,	you’ve	come	really	far	in	terms	of	your	programming	knowledge	and	abilities.	7
weeks	ago,	many	of	you	were	seeing	HTML	and	CSS	for	the	first	time,	discussing	different	kinds	of	data
and	making	charts	using	Vega-lite,	and	dipping	your	toes	into	general-purpose	programming	using
TypeScript.

Today,	you’re	reasonably	familiar	with:

Data	types	and	variables
Arrays
Functions
If	conditions	and	control	flow
Loops
Problem-solving	patterns	(map,	filter,	reduce)
Functions	as	values

That’s	a	lot!	Congratulations	on	being	awesome	and	learning	so	much	so	fast!

Overview

In	this	lab,	we’re	going	to	continue	to	interrogate	the	state	of	K-12	CS	Education	in	California.	In	the
previous	lab,	we	broke	down	enrollment	trends	in	CS	based	on	gender	and	the	county’s	rural/urban	status.
This	time,	the	dataset	includes	another	dimension	of	information—race.

The	dataset

The	data	is	in	the		dataset.json		file.

In	addition	to	the	inclusion	of		Race		as	a	field	in	the	dataset,	you’ll	notice	that	the	dataset	is	structured	a
little	differently.

The	first	thing	you	should	notice	is	that	each	county	appears	in	several	records	in	the	dataset.

This	is	because	each	record	no	longer	represents	an	entire	county.	Each	record	now	represents	a	slice	of
the	students	in	that	county.

For	example,	the	first	record	is:

{
		"countyName":"Alameda",
		"Race":"African	American",
		"Gender":"F",
		"courseType":"AP	CS",
		"totalStudents":19,
		"isRural":false
},

This	record	says	that	there	are	19	female	African	American	students	taking	AP	CS	courses	in	Alameda
county.

The	next	record	is:

This	says	that	there	are	292	female	African	American	students	taking	non-AP	CS	courses	in	Alameda
county.

For	each	county,	there’s	an	individual	record	for	each	slice	of	students,	based	on:	*	Race	*	Gender	*	Type
of	enrollment	(AP	CS,	non-AP	CS,	or	overall	enrollment)

So	if	I	wanted	to	know	the	total	number	of	female	African	American	students	taking	CS	courses	in	each	,	I
would	filter	the	list	to	only	include	records	where		Gender		is		"F"	,		Race		is		"African	
American"	,	and		courseType		is		"AP	CS"	||	"Non-AP	CS"	,	and	then	sum	up	the	
	totalStudents		value.

So	why	have	I	provided	the	data	in	this	format?

Having	the	original	data	sliced	up	in	this	way	allows	us	to	perform	arbitrary	transformations	on	the	data	to
get	it	into	the	format	we	want.	This	enables	us	to	answer	a	broader	variety	of	questions	from	our	dataset.

We’re	going	to	be	doing	visual	analysis	in	this	lab.	Instead	of	(only)	printing	out	averages	or	percentages,
you’ll	instead	create	informative	figures	that	can	communicate	a	lot	more	information	at	once.

Separating	the	data	based	on	nominal	fields	like		Race	,		courseType	,		Sex	,	and		isRural		allows
us	to	easily	use	those	different	categories	in	our	visual	encodings	in	Vega-lite.	This	similar	to	how	we	used
	isUpForAdoption		and		Sex		of	Cats	in	the	Cal	Poly	Cat	Program	dataset.

First	let’s	take	a	look	at	what’s	already	given	to	us	in		script.ts	.

The	first	line	is	importing	the		vegaEmbed		function,	which	we	use	to	draw	Vega-lite	figures	in	HTML,
and	the		VisualizationSpec		interface,	which	we	can	use	to	get	type	hints	while	creating	Vega	charts.

The	next	statement	(on	line	3)	creates	the		County		interface.	We	use	this	to	describe	the	data	that	we	see
in		dataset.json		and	in	the	examples	above.

Take	a	second	to	confirm	that	the	field	names	in	the	interface	match	the	field	names	in	the	records	in	the
dataset.	If	any	fields	don’t	match,	this	can	lead	to	unpredictable	and	hard-to-find	errors,	as	some	of	you
saw	in	Lab	5.

{
		"countyName":"Alameda",
		"Race":"African	American",
		"Gender":"F",
		"courseType":"Non-AP	CS",
		"totalStudents":292,
		"isRural":false
},

Next,	we’ve	got	these	two	lines:

const	dataset:	string	=	await	(await	fetch('dataset.json')).text();
const	countyData:	County[]	=	JSON.parse(dataset);

The	first	line	reads	the	data	into	one	giant		string	.2	The	second	line	turns	that	giant		string		into	an
array	of		County		objects	and	assigns	that	to	the		countyData		variable.

	countyData		now	contains	all	of	the	data	from	the		dataset.json		file.	Since	the	data	is	separated
based	on	a	number	of	categories,	we	can	“slice	and	dice”	the	data	any	way	we	want	to	help	with	our
analysis.

Part	1

Task	1:	Overall	enrollments	by	Race

First,	we’d	like	to	know	how	many	students	of	each	race	(according	to	the	US	census	categories)	are
enrolled	in	California	public	high	schools.

That	is,	we’d	like	to	only	look	at	records	whose		courseType		is		"Overall	Enrollment"	.

This	part	of	the	lab	walks	you	through	the	steps	to	do	this.

Step	1:	Filter	the		countyData		array	to	only	include	records	where		courseType	===	"Overall	
Enrollment"	.

Create	a	new	array	called		overallEnrollment		that	only	includes	records	showing	the	overall
enrollment	in	the	county	(i.e.,	as	opposed	to	CS	or	AP	CS).

const	overallEnrollment:	County[]	=	countyData.filter(function(c)	{
		return	c['courseType']	===	'Overall	Enrollment';
});

See	the	Replit	in	the	“Functions	as	values”	module	on	“map	and	filter”	for	a	reminder	of	how	this	works.

The		filter		above	takes	the	function	that	given	to	it	as	an	input,	and	runs	that	function	on	each	item	in	
	countyData	.	If	the	result	is		true	,	that	item	is	included	in	the	resulting	list.	After	the	dust	settles,	the
	overallEnrollment		array	includes	all	records	where		courseType		is		"Overall	Enrollment"	.

Step	2:	Create	a	Vega-lite	bar	chart	showing	overall	enrollment	for	individual	races	in	California.

Using	the	new	array,	create	a	new	Vega-lite	chart	specification.	We	want	the	chart	to	show	the	following:

On	the		x		axis,	show	a	bar	for	each		Race	
On	the		y		axis,	the	height	of	each	bar	should	be	the	sum	of	the		totalStudents		for	that		Race	

Use	the	following	as	a	starting	point.	Fill	in	the	blanks.

const	overallEnrollmentChart:	VisualizationSpec	=	{
		title:	"Overall	enrollment	of	high	school	students.",
		data:	{
				values:	______
		},
		mark:	{
				type:	______
		},
		encoding:	{
				x:	{
						field:	_______,
						type:	'nominal'
				},
				y:	{
						field:	________,
						aggregate:	'sum',
						type:	'quantitative',
						title:	'Number	of	students'
				}
		}
}

Notice	that	we	have	added	a		title		to	the	chart	as	well	as	to	the		y		encoding.	Since	this	document	is
going	to	have	many	charts,	it’s	important	that	you	communicate	clearly	what	each	chart	depicts.	If	you
omit	the	titles,	Vega-lite	does	its	“best”	based	on	the	data	it’s	plotting.

So	for	the	x-axis,	that	worked	fine,	because		Race		is	a	meaningful	title	for	that	axis.	For	the	y-axis,	it
would	have	labelled	it		totalStudents	,	which	may	be	meaningful	but	is	not	super	professional.

Step	3:	Display	the	chart	in	the	HTML	document.

Your		index.html		already	has	an	empty		<div>		container	with	the	id		"overall-chart"	.	Use	
	vegaEmbed		to	add	your	new	chart	to	the	HTML	page.

vegaEmbed('#overall-chart',	overallEnrollmentChart);

So	go	ahead	and	hit	the	Run	button.

You	should	see	the	following	chart	showing	the	total	number	of	students	of	each	race	enrolled	in	public
high	schools	in	California.

Num	students	in	California.

Take	a	second	to	study	the	chart	specification	you	just	created.	The	figure	uses	two	visual	channels:	the
horizontal	position	(x)	and	the	vertical	position	(y).	These	are	mapped	(“encoded”)	to	two	fields	in
the	dataset:

	x		is	mapped	to		Race	,	so	the	horizontal	position	of	the	bars	correspond	to	the	Race
	y		is	mapped	to		totalStudents	,	so	the	height	of	the	bars	represents	the	number	of	students	of
that		Race	

We	can	also	gather	some	useful	insight	from	this	chart.	For	example,	that	Latinx-identifying	students	are
by	far	the	largest	population	of	students	in	California,	followed	by	White-identifying	students.

What’s	the		aggregate:	'sum'		part	doing?

Since	we’re	only	separating	the	data	based	on	the		Race		field,	we	want	to	aggregate	the	
	totalStudents		value	for	all	other	categories	(i.e.,	in	this	figure,	we’re	not	displaying	counts	based	on	
	Gender		or		courseType).	So	in	the		y		encoding	we	also	include	an	aggregation:	we		sum		up	the	
	totalStudents		across	all	categories	except		Race	.

Task	2:	CS	Enrollments	by	Race

Next,	we’d	like	to	plot	data	about	students	enrolled	in	CS	courses.

Do	the	following,	looking	at	the	previous	part	as	a	reference	as	needed:	1.	Create	a	new	array	called	
	csEnrollments		containing	only	the	records	from		countyData		where		courseType		is		AP	CS		or
	Non-AP	CS	.	Use	a		filter		to	do	this.	Recall	that	the	boolean	OR	operator	is		||		in	TypeScript.	2.
Make	a	new	chart	that	looks	the	same,	except	it	shows	data	from	your	new	array		csEnrollments	.	That
is,	you	can	copy	the	old	chart	specification	and	only	change	the		values		field	for		data	.	3.	Add	a	an
empty		div		tag	to	your	HTML	document	below	the		overall-chart		tag,	and	use		vegaEmbed		to
embed	your	new	chart	in	the	HTML	page.	Recall	that	the	div	is	initially	empty	because	we	are	going	to
use		vegaEmbed		to	populate	it	with	the	figure.

After	you	do	these	steps,	hit	the	Run	button.	You	should	see	two	charts	in	the	web	page.	The	new	chart
should	look	like	this:

Race	and	CS	Course	type

Task	3:	Reflect	and	answer	questions

Study	the	two	charts	that	are	in	your	HTML	page.	What	are	some	differences	you	notice?	Together	what
“story”	do	the	two	charts	tell	about	who’s	taking	(or	not	taking)	CS	courses	in	California	high	schools?

Add	a		<p>		tag	(paragraph)	to	your	HTML	page	below	the	two	charts	and	answer	the	question	above	in
your	own	words	and	in	a	few	sentences.

Part	2

Add	an		<h2>		tag	with	the	text	“Part	2”	below	your	reflection.	This	helps	to	organise	the	content	in	your
HTML	page.

The	two	charts	above	tell	a	story.	When	looking	at	all	enrollments,	we	can	see	that	Latinx	students	form
the	highest	proportion	of	students	in	California	high	schools,	but	the	“gap”	between	Latinx	students	and
the	next	two	most	frequent	categories	(White	and	Asian)	students,	seems	to	reduce	when	one	looks	at	CS
enrollments	in	particular.

Let’s	dig	into	this	a	bit	deeper.

Right	now,	we	can	roughly	glean	some	insight	from	a	combination	of	the	two	figures,	but	really	what	we
would	like	is	a	figure	that	tells	us	about	rates	(i.e.,	percentages)	instead	of	absolute	counts.

That	is,	we	would	like	to	draw	a	chart	where	each	bar	represents	a	percentage	of	students	taking	CS
courses.

For	example,	just	eyeballing	the	two	existing	charts,	we	can	see	that

Roughly	1	million	(1000000)	Latinx	students	are	enrolled	in	California	high	schools
Roughly	40	thousand	(40000)	Latinx	students	are	enrolled	in	CS	courses

We	can	therefore	say	that	roughly	4%	of	Latinx	students	are	taking	CS	courses	(since		40000	/	
1000000	=	0.04).

This	involves	a	number	of	sub-steps.	Drawing	a	barchart	containing	percentages	involves	some	steps	of
data	preparation.

Task	1:	Data	preparation

At	the	end	of	this	series	of	steps,	we’d	like	to	have	an	array	of	objects	that	look	like	this:

{
		Race:	string,
		totalOverallEnrollment:	number,
		totalCSEnrollment:	number,
		percentCSEnrollment:	number
}

So	for	example,	one	of	the	objects	in	the	array	would	be:

{
		Race:	'Latinx',
		totalOverallEnrollment:	1000000,
		totalCSEnrollment:	40000,
		percentCSEnrollment:	0.04
}

Note	that	the	numbers	above	are	just	approximations.

Our	resulting	array	should	have	exactly	8	objects,	one	for	each	race	in	our	dataset.

Step	1.	Write	a	reusable	function	to	compute	the	total	enrollments	for	a	given	race.

Write	a	function	called		getTotalEnrollmentForRace	.

It	should	have	two	inputs:
a		string		representing	the	race	for	which	you’re	computing	total	enrollment
an	array	of	records	(County[])	representing	the	dataset	to	work	with.

It	should	output	a		number		representing	the	total	number	of	students	of	the	specified	race.

So	if	you	call		getTotalEnrollmentForRace('Latinx',	overallEnrollment)	,	you	should	get	a
number	close	to		100000		in	return.	If	you	call		getTotalEnrollmentForRace('Latinx',	
csEnrollment)	,	you	should	get	a	number		40000		in	return.

You	should	be	able	to	accomplish	this	task	using	the	following	the	substeps:

a		filter		to	filter	based	on	the	input		race		variable.

a		map		to	go	from	each	remaining	record	to	its		totalStudents		value.
a		reduce		to	sum	up	the		totalStudents		values.

If	you’re	using		for		loops	for	the	above,	you	may	be	able	to	do	the		map		and		reduce		steps	in	a
single	loop.

Notice	that	we’re	using	the		overallEnrollment		and		csEnrollment		arrays	you	created	in	Part	1.
If	we	hadn’t	done	those	steps,	you	would	have	had	to	use	an	additional	filter	step	to	filter	by	
	courseType	.

Step	2.	Prepare	data	for	visualisation

Now	that	we	have	our		getTotalEnrollmentForRace		function,	let’s	use	it	to	compute	the	following
for	each	race:	*	total	number	of	students	overall	*	total	number	of	students	in	CS	courses

Then	we	can	use	those	numbers	to	compute	the	percentage	of	students	within	each	group	that	are	enrolled
in	CS	courses.

Recall	that	we	eventually	want	to	end	up	with	an	array	of	objects	that	look	like	this:

Define	an		interface		to	describe	the	data	above.	Call	it		EnrollmentPercentByRace		(or	whatever
makes	the	most	sense	to	you).	Then,	use	this	new	interface	as	the	type	for	a	new	empty	array	called	
	enrollmentPercentByRace	.

We	will	store	our	results	in	this	array.

Step	4.	Compute	totals	and	percentages

We	need	to	compute	enrollment	percentages	for	each	of	the	items	in	the	following	list:

const	races:	string[]	=	['African	American',	'Asian',	'Filipino',	'Latinx',	'Multiple	Races/Other',	'Native	American',	'Pacific	Islander',	'White'];

Sounds	like	a	job	for	a		for-of		loop!	We’re	going	to	loop	over	the	list	of	race	above,	and	for	each	one,
compute	the	total	overall	enrollment,	the	total	CS	enrollment,	and	the	percentage	of	CS	enrollment.

Here	are	the	steps	for	you	complete	this	task	(written	in	plain	English):

Loop	over	the	list	of		races	.	For	each	item	in	the	list,	do	the	folowing:	*	Compute	the	total	overall
enrollment.	*	Compute	the	total	CS	enrollment.	*	Compute	the	percentage	of	students	enrolled	in	CS	(total
CS	enrollment	/	total	overall	enrollment)	*	Construct	a	new	object	with	the	fields		Race	,	
	totalOverallEnrollment	,		totalCSEnrollment	,		percentCSEnrollment	,	and	give	those

{
		"Race":	"Latinx",
		"totalOverallEnrollment":	100000,
		"totalCSEnrollment":	40000,
		"percentCSEnrollment":	0.04
}

fields	the	appropriate	values	that	you	just	computed.	*		push		the	new	object	into	the	array	you	had
prepared	earlier	(enrollmentPercentByRace).

After	this		for-of		loop,	you	should	have	an	array	of		EnrollmentPercentByRace		objects.	The	array
should	contain	exactly	8	items	(one	for	each	unique	value	of		Race).

Step	5.	Prepare	and	draw	the	chart.

We	want	to	draw	a	bar	chart	just	like	before,	but	this	time	instead	of	plotting	the	total	number	of	students,
we	want	to	plot	the	percentage	within	each	race.	Go	ahead	and	prepare	the	chart.

Again,	you	can	use	the	previous	charts	as	a	starting	point.	Be	sure	to	update	the	following:

The		values		field	for	the		data	.	You	should	now	use	your	new	array
(enrollmentPercentByRace).
The		y		encoding	should	be	based	on	the		percentCSEnrollment		field.
There	should	not	be	an		aggregate		in	the		y		encoding	any	longer—think	about	why	this	is	and
discuss	with	your	tablemates.

The		x		encoding	can	stay	the	same	as	the	previous	charts,	since	we’re	plotting	by		Race	.

Make	sure	to	set	chart	and	axis	titles	appropriately.

Step	6.	Reflect

Add	a		<p>		tag	below	the	newest	chart.	Then	reflect	on	and	answer	the	questions	below.	Write	150–250
words.

Based	on	these	figures,	do	you	think	that	students	of	different	backgrounds	are	well-represented	in
high	school	CS	courses?
Which	groups	do	you	think	are	under-represented	or	over-represented?
What	are	the	implications	of	this	on	representation	in	college	CS	courses,	and	in	the	information
technology	workforce?

Part	3

So	far,	we’ve	explored	slices	of	the	data	based	on	a	single	demographic	category	(race).	But	the
intersections	of	different	demographic	categories	is	often	where	the	more	nuanced	analysis	can	take	place.

For	this	last	part,	produce	a	third	figure	including	at	least	two	demographic	categories	(choosing	from
race,	gender,	course	type,	or	county	rural/urban	status),	and	include	a		<p>		tag	reflecting	on	your
interpretation	of	the	figure.

You	can	discuss	and	collaborate	with	your	classmates	for	this,	but	each	student	must	submit	individually.

1.	 https://csforca.org↩ ︎

2.	 Notice	that	this	uses		fetch		instead	of		fs.readFileSync		like	the	code	in	Lab	5	did.	Remember

what	I	said	about	code	running	in	a	web	page	not	having	direct	access	to	the	filesystem?		fetch	
accesses	files	“over	the	internet”.	This	means	that	only	files	that	are	made	“visible”	by	their	owners
can	be	accessed.	In	this	case,	the		dataset.json		file	is	“visible”	to	this	webpage,	so	it	can	be
accessed	through		fetch	.↩ ︎

	Lab 6 — TypeScript, HTML, and Representation in Computing
	Pre-reading
	Objectives
	BPC learning objectives

	Introduction
	Overview
	The dataset

	Part 1
	Task 1: Overall enrollments by Race
	What’s the aggregate: 'sum' part doing?
	Task 2: CS Enrollments by Race
	Task 3: Reflect and answer questions

	Part 2
	Task 1: Data preparation

	Part 3

